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Abstract--We have examined the two-phase flow of a gas with dispersed, nonspherical, rigid 
particles. We describe a model for the motion of a single ellipsoid in the fluid, including the degrees 
of freedom associated with translation, lift, orientation and angular velocity. We assume there is 
no interaction between the particles, and give the Liouville equation for the distribution function 
of the particles. A computer code has been developed to simulate the two-dimensional behavior 
of such a flow. We demonstrate, in the case of a high-speed jet impinging on an obstacle, that the 
force exerted on the obstacle by the particles depends strongly on the eccentricity. 

1. I N T R O D U C T I O N  

The presence of particles in a flow can alter both its dynamics and thermodynamics, 
depending on the volume fraction ~, of the particles, their size and their density. For 
~, > 0.2, particle collisions become an important phenomenon. At the close packing limit 
(Ctl = 0.45 for spheres), the two-field flow behavior is characterized by the effect of the 
collisions between the particles rather than by any other interaction between the 
surrounding fluid and the particles. For small values of ~,, collision effects can be 
neglected, and the flow regime is characterized by interactions between the fluid and each 
of the particles. 

Consider a single particle. The forces acting on this particle can be isolated (see Jeffery 
1922; Lamb 1966). If the Reynolds number Re ,~ 1, the particle is mainly subject to Stokes 
drag in steady state. A nonspherical particle is also subject to a lift and a torque created 
by the difference of fluid microscopic velocity on its surface. If Re > 5, we have to consider 
a form of drag as well as a flow separation lift. If Re > 40, turbulent eddies are produced 
in the shedding vortex sheet downstream of the particle. For nonsteady flows, a 
representation of the force acting on a spherical particle can be expressed as the sum of 
the Stokes drag and the history-dependent Basset term. A considerable amount of work 
has already been done in the case of spherical particles in a fluid by Margolin (1977). 
However, the assumption of sphericity is often far from reality. A theoretical investigation 
has been performed by Jeffery (1922) in the case of ellipsoids. Also, experiments have been 
performed by Goldsmith & Mason (1962) on suspensions of ellipsoids in tubes. Both are 
low-speed studies; our goal is to derive a more general model, which holds for both high- 
and low-speed flows. One of our motivations is to be able to describe the flow of high-speed 
jets with entrained nonspherical particles, for application to some nuclear reactor safety 
problems. An example is the jet produced by the rupture of a tube in which pressurized 
water circulates. Another motivation is to describe the two-field flow of solid particles (e.g. 
sand grains) blown away by a shock. For simplicity, we assume that the particle shapes 
are ellipsoids. 

In section 2 we propose a heuristic model describing the different forces acting on a 
single particle due to the action of the surrounding fluid. Because we are mostly interested 
in the collective behavior of the particles in the fluid, this model is not a detailed description 
of the interaction between a single particle and the surrounding fluid. However, it gives 
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expressions for drag, lift and torque at any flow speed. The model also allows us to 
calculate characteristic times (e.g. rotation time). Although we only consider rigid particles 
at the present stage of our study, we determine in section 2 in which regime the deformation 
of the particle is important, compared to their rotation. Besides mechanical actions, we 
also have thermodynamic processes, such as the heat transfer between the particle and 
the surrounding fluid, and the compression of both the particle and the fluid. Due to the 
relative incompressibility of the particle, heat transfer can be much faster within the 
particles than in the fluid and the energy released to the fluid may be very important for 
a given volume of fluid, if the density of the particles is much larger than the density of 
the fluid. To take these actions into account, it is necessary to know certain coefficients 
such as the rate of  thermal change between the fluid and the particles, and the 
characteristics of the material constituting the particles. For simplicity, we neglect such 
processes in this paper; their effect will be considered in a subsequent paper. 

We use the results of section 2 to derive a model for a two-field flow composed of 
ellipsoidal particles entrained in a fluid. The fluid equations for a two-field flow have been 
derived by many investigators, usually by considering microscopic conservation equations 
for mass, momentum and energy, and integrating these equations over some control 
volume (see Nigmatulin 1979). There are some conceptual difficulties in the manner in 
which cuts are made through the material of one field in order to integrate over the other, 
and in the way area and volume integrals over a single phase are transformed to integrals 
over the entire control volume. Also, there are some difficulties due to the fact that using 
fluid equations for a dispersed phase means that one assumes the distribution function of 
the particles to be Maxwellian in velocity. Thus, the detailed description of the distribution 
function is lost. In order to preserve the local spectra of velocity, angular velocity and 
orientation of the particles, we employ in section 3 a Liouville equation to describe the 
distribution of the dispersed phase in physical, velocity and orientation space. This 
approach forms a consistent basis for complicated extensions to the field equations, such 
as the effect of a non-Maxwellian velocity distribution for the particles, and the 
introduction of  turbulence. 

We describe in section 3 a hybrid model, consisting of this Liouville equation for the 
particles, which uses the results of section 2 coupled with field equations for the 
surrounding fluid. We briefly consider the introduction of turbulence into our model, and 
its effect on the Liouville equation. 

To illustrate the possibilities of this model, a code has been developed to obtain solutions 
for the model in a 2-D plane geometry. In section 4, we present numerical results for the 
special case of high-speed jets. We study the behavior of a jet impinging on a rectangular 
obstacle, and the influence of particle eccentricity on the pressure exerted on the obstacle. 

2. BEHAVIOR OF AN E L L I P S O I D A L  P A RTICLE IN A FLUID 

2.1. Modeling requirements 

We consider here an ellipsoid, of principal radii a and b, with b < a (see figure 1). We 
also define the normal n to the surface of largest cross section at its center of mass, and 
the two angles ~ and /~, such that 

= (n, x), [1] 

where (x) is in the laboratory frame, and 

/~ = ( n ,  u2 - u l ) ,  [2]  

where u~ is the particle velocity, and u2 is a mean fluid velocity at the same location as 
the particle. If the particles are much smaller than our length scale of interest, we also 
might define the velocity u2 as an ensemble average of the microscopic velocities of the fluid 
over a control volume in phase space (see Nigmatulin 1979). Starting from the work of 
other investigators (e.g. for spherical particles), we seek a simple extension to ellipsoids. 
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Figure 1. Ellipsoid in a fluid. 

The heuristic requirements for  obtaining our  expressions are that: 

(1) The  different symmetries in the problem are respected. 
(2) The expressions are tensor invariant.  
(3) The limiting cases are recovered. I f  a = b, i.e. if the particle is spherical, we 

do not  have ro ta t ion nor  lift o f  the particle. Likewise, for  an infinitely 
massive particle, there is no motion;  if fl = rt/2, there is no torque; and if 
fl vanishes, there is no lift. 

(4) Dimensional i ty propert ies are respected. 
(5) The  different coefficients are deduced, if possible, f rom known coefficients 

for spherical particles. 
(6) We choose the simplest linear or quadrat ic  expressions satisfying the above 

requirements.  

2.2. Drag force 

At steady state, when Re ,~ 1, we have (see Chandrasekhar  1943) 

FD = 67zr/R (u2 -- Ul ), [3] 

where R is the radius o f  a spherical particle and r/is the viscosity of  the surrounding fluid. 
According to our  requirements,  we propose  

F D I  = K D 1  r / V l / 3 ( u  2 - -  U 1 ) ,  [4] 

where Vp is the volume of  the particle. For  high-speed flows, the usual expression (see Daly 
& Har low 1978) is 

FD = Kp2 7zR 2 In= - ui 12 [5] 
We propose here, 

FD2 = KD2p2Se~fIU2 - -  U, I(U2 - -  U, ),  [6] 

where Se~ = na2(cos 2 fl + e 2 sin 2 fl)l/2 is the cross section of  the particle with respect to n, 
and e = b/a is the particle eccentricity. 

2.3. Lift force 

The lift force is or thogonal  to the vector U = u2 - Ul and in our  case lies in the plane 
defined by the vectors n and U. The expression for the lift must  be invariant under a 180 ° 
rota t ion of  the particle, and vanishes if fl = re/2. We thus propose 

FL1 = CLl [ - s ign (n 'U) ]  n x x U [7] 

M.F 12 6---C 
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for Stokes lift and 
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FL2 = CL2[--sign(n. U)] (n x U) x U, 

for flow-separation lift. 
Define 

A ( f l )  = ( c o s  2 fl + e 2 sin: fl)l/: and B(f l )  = (e 2 cos z fl + s in  2 fl)1/2. 

We propose the following expressions for the coefficients CL~ and CL2: 

CLl = KLiq(a  -- b)  

and 

CL2 = ½KEEp1 lxa, 

where Ix is defined in figure 1. We have 

a(1 - e2)[sin 2/~[ 
lx= 

B(fl) 

[8] 

[9] 

[10] 

, : b2)lsin ~/~l 
CL2 = ~KL2p2(a -- [1 1] 

B(fl) 

In summary, the equation of motion for the particle is 

-- VpVP2 ~- KD, ~ VI/3 (u2  - -  Ul ) + K D 2 P 2  Seff lu2 - I l l  I(u= - u , )  

Thus 

m - -  - - 

dul 
dt 

[ <-ul] x (u2 - ul){ - sign[n" (u2 - u,)])  +CL~ n ×  lu 2 ux 

+ CL2[n × (u2 -- ul)] x (u2 -- uj){ -- sign[n.(u2 -- ul)]}, [12] 

where P2 is the fluid pressure. The coefficients Kin, Kin, KLI and KLZ are constants of the 
order of  unity. 

2.4. Torque 

We consider four different contributions to the torque acting on one particle. The first 
is the viscous damping of the vorticity of  the surrounding fluid, and the second is the 
flow-separation damping. The source of  vorticity is ½V × u2, and we thus propose 

T, = K ~ :  Vp(½V × u2 - , - )  [13] 

and 

T2 = ½K•2p2a(a - b )S .A( f l ) l u2  - u, l(½V x u2 - oJ), [14] 

where to is the angular velocity of the particle, and 

S p =  • a  2 . 

The two other contributions to the torque acting on the particle result from the 
nonsymmetric repartition of the microscopic fluid velocities on the surface of  the particle. 
Such terms must vanish if u 2 -  u~ is orthogonal or parallel to n. Thus, we propose 

( u2 - u '[)  [n x (u2 -  u,)] [15] T 3 = - K ~ 3 n b ( a - b )  n lu 2 ut 

for the viscous torque and 

T4 = ½K~aP2(a - b)Sp[n'(u2 - Ul)][n x (u2 - ul)] [16] 

for the flow-separation torque. The resulting equation for the variation of angular velocity 
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of  the particle is 

dto 
~: - ~  = K~I r/Vp(½V x u2 - to) + ½Ko, zp2a(a - b)SpA(fl)[u2 - ul 1(½V x uz - to) 

u, "X, 
-K~oaqb(a - b )  U.l - l.)tu x (u : -u , ) ]  

+½Ko4pz(a - b)Sp[n'(u2 -- u,)][n x (u2 - u,)], [17] 

where ~ is the moment of inertia of  the particle. The coefficients Ko, t, Ko~2, Ko~3 and K~4 
are constants of the order of  unity. 

2.5. Relaxation times 

Equations [12] and [17] exhibit characteristic times of interest, such as a rotation time, 
and a relaxation time for the equilibrium orientation of  the particle with respect to the 
fluid velocity u2, and consequently a vanishing time for the lift velocity. Also of  interest 
is the relaxation time of Ul towards u2. We compare here rotation time with deformation 
time, to determine in which range of  parameters this modeling is valid. 

First, assuming that ul and u2 are constant velocities, we choose the first axis of the 
inertial frame to coincide with UE-U~. Restricting ourselves to low-speed flows, [17] 
becomes, with ~ = to, 

J~" = -C~1 ~ - Co,3 sin ~ cos 

or, for small oscillations around ~ = 0, 

~"  = --Col~ -- Co3¢, [18] 

where C~ and fro 3 a r e  independent of  ¢. This equation admits exponentially decreasing 
solutions, which shows that ¢ = 0, to = 0 is a stable equilibrium position. Conversely, 
around ~ = rt/2, to = 0, [17] can be written as 

~" = --Ct01~ + C~3~, [191 

which leads to solutions whose stability depends on the balance between the speed of the 
surrounding flow and the strength of  the damping rate. 

If  the particles are not solid, rotation competes with deformation. From [18] or [19], an 
estimation of  the time for which a significant rotation of  the particle takes place is 
6tr=(,~C~31) 1/2. It is proportional to [u2--utl 1/2 for Stokes flow, and to [u2-u~l for 
inertia-dominated flow. The deformation time can be estimated by balancing internal and 
external stresses acting on the particle. For  inertia-dominated deformation, we can 
estimate the internal stress to be 2r h ud/r (uo is the distortion velocity and r h is the viscosity 
of  the material of  which the particle is constituted), and the external stress to be 
½p2lu2-u~l 2. Thus Ud~--rp2lu2--ul[2/4rh, and the distortion time 6td~--r/ud is 
6td ~--4rh/p2lu2- Ut 12. For  viscous-dominated deformation, the same balance leads to the 
equation 

d f4n  3 "~ LY p,.d)=" p21u=-u,I 
In terms of  the distortion amplitude ad, where dad~dr =Ud, we obtain 
d2ad/dt 2 = 3 p 2 ( u  2 - -  ul)2/8pl r, and thus, taking ad = r ,  ¢$t d ~ [ 3 p 2 ( u  2 - -  ul)2/8pmr2] -t/2. 
Hence, for low-speed flows, 

6tr oz (u2 - uO-I/2 

and 

6td oc (uz - um)-J. [20] 

For high-speed flows, 

6t~ ~ (u2 - ut )-m 
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and 

~l  d 0£ (U 2 - -  Ul)  -2 .  [21] 

Equations [20] and [21] indicate that, for fluid particles, the rotation time is smaller for 
large velocities, and larger for small velocities than the distortion time. This indicates the 
necessity of  including deformation in any model dealing with fluid particles. 

We now analyze the relaxation of ul towards u2. Equation [12], in I-D plane geometry, 
and without lift, is written as 

~u, ~u, /',~u2 ,~.2"~ KD, , ( u 2 - u , ) + - -  
%-T+"'W ='~ \ ~t +"2W)~ p, vp 

Km P2 Sefr 
p, Vp l u2 - u, ](u2 - u, ) ,  [22] 

where 6 = P2/Pl. At steady state, and with IUI = lu2-  Ull ,~ u21, [22] becomes 

(~U ¢~U 2 KD1 
- u2 -~x  = U -~x  + - -  v z/---3 U [23] 

Pl --p 

or, 

1 c~U 1 t~U 2 KDI t/ 
U 6~x u 2 6~x ÷ - -  g 2/3" [24] Pl U2 --p 

In the absence of  a gradient in u2, the accommodation length 

1 &U -1 

is equal to the viscous deceleration length 

LD = KD____L ~/ -I 
IP,U~ vPI ' 

as expected. Equation [24] also shows that, for a small gradient length L~ 2 for the fluid 
velocity, the accommodation length can be approximately estimated as a harmonic mean 
of L,2 and LD, at least when the terms corresponding in [24] have the same sign. This 
indicates that, even in the presence of drag, we might have uj different from u2, as long 
as the gradient length of u2 is shorter than the deceleration length LD. This is, for example, 
the case at the exit of  a tube, whenever the pressure is much smaller outside, in which case 
there is a strong acceleration of  the fluid, and therefore a steep gradient in u2. 

To illustrate this analysis, consider the following numerical application. Define the u2 
velocity profile for 0 ~< x < + ~ ,  such that 

X 
U2(X) = U20 ÷ (U2°c - -  /320) X ÷ 1 [25] 

When the boundary pressures, P ( x  = 0) and P ( x  = + ~ )  are given, we can calculate u2~ 
through the use of  Bernoulli's theorem and the equation of state 12 = P/(7 - 1)p2 for the 
fluid. Thus, 

Pressure and density profiles are then 

" x)v.0 
and 

) .  [28] 
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Figure 2. Behavior of  a single ell ipsoid in a fluid. 

We solve the dimensionless version of  [12] and [17]. Initially, we take Ul0 = u20, for a particle 
of  eccentricity e = 0.1, and half diameters a - - 1 0 - 2 c m ,  b = 10-3cm. The dimensionful 
pressures are P = 10 v dyn/cm 2 and P = 106 dyn/cm 2, and U2o is the sound speed. Also, we 
take ~ /=  0.15 10 -2 g/cm -j s -2, P20-- 10-3 g/c m-3 and Pl = 1 g/cm -3. All Ks are o f  order 1 
and are given this value. In figure 2, the dimensionless value o f  50 for time t corresponds 
to the distance l~0 for which the u2 profile differs by < 1% from its final value u2~. In this 
case, the accommodat ion  length for u~ is also/50, which confirms [24]. In figures 3 and 4, 
we see that the accommodat ion  time about the equilibrium angle ~ = 0, for a vanishing 
angular velocity, is attained after a few oscillations. The initial angle is - n / 4 ,  and the 
initial angular velocity is zero. 

~ - O. 2379 ~ V  

- 0 . 7 6 3 2 ~  

-1 . 2 8 8 5 ~  

I I I I I I 
00000 7.6923 15.5845 230769 507692 58.4615 461538 55.8462 

d t  =0 .01  

Figure 3. Behavior o f  a single ell ipsoid in a fluid. Relaxat ion of  the angular velocity o f  the particle 
towards  zero. 
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Figure 4. Behavior of  a single ellipsoid in a fluid, Relaxation of  the angle of  the particle with the 
relative velocity towards zero. 

3. HYBRID MODEL 

3. I. Statistical description o f  the dispersed field 

The fundamental equation for our derivation expresses the conservation of the total 
number of particles in an infinitesimal volume of phase space centered at position x, 
velocity u, angular velocity ca and orientation n. The central function is N(x, u, ca, n, t), 
which is defined in such a way that Ndxdudcadn is the probable number of solid particles 
with position x within the interval dx, velocity u in du, angular velocity ca in dca and 
orientation n in du, at time t. We have 

ON+ (udx   (u (u 

in which the total time derivatives are along the dynamically and kinematically allowable 
paths of the individual particles. Thus, if [2] is the tensor of inertia of the particles and 
Fj and Tj are the force and the torque acting on the particles. 

dxj 
d---[ = uj, [30] 

duj = ~ ,  [31] m-d; 
de)i 

[J~] -~- = Tj [32] 

and 

d n  
- -  = n × c a .  [ 3 3 ]  
dt 

We define ~ and Tj using [12] and [17]. Due to the averaging of the microscopic velocities 
u2 on the surface of the particle in these equations, we have to restrict outselves to length 
scales larger than the size of a particle. This also implies that the hydrodynamic scale is 
larger than the size of a particle. We then assume that [12] and [17] are valid for any particle 
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located within a given control volume over which the microscopic conservation equations 
for the fluid are averaged to obtain the hydrodynamics equations. This assumption implies 
that the Cs and Ks in [12] and [17] are proportional to the volume fraction of the fluid. 
This is consistent with the requirement that force per unit volume arises from the loss of 
available momentum, which is equal to the effective interaction area times the fraction 
interacting per unit time [11]. This area is assumed to be proportional to the volume 
fraction of the background fluid, because the fluid momentum in the control volume is 
proportional to the fluid volume fraction. With this restriction, our statistical model of the 
dispersed field is given by [29], together with [30]-[33] and [12] and [17], in which u~ is the 
fluid velocity. 

Equation [29] describes the behavior of the single particle distribution function, and 
depends only on one-particle dynamics. Nevertheless, this equation can be considered to 
represent the multiparticle effects of the dispersed field through the force ~ and the torque 
~ ,  which couple the different particles through their interactions with the surrounding 
fluid. A particle affects its surrounding fluid, which in turn alters the behavior of other 
particles located in that region of phase space. 

Define 

and 

p ~ = f f f Nm dul dto dn [34] 

P ~ ~i = J J J Nmuji dUl dta dn, [35] 

which are the density per unit total volume of the particles, and the mean momentum of 
particles located at a given point x. If we multiply [29] by muti and integrate it over the 
entire range of Ul, to and n values, we obtain 

JJJ  ulj 
+ - - - -  Nm~uli~UljduldoJdn- fffmuti ~--~--- dul  d ~  d u  , Ot C~Xy 

[36] 

in which 6uli = u . -  ~ .  The terms in [36] can be respectively interpreted as the rate of 
change of total dispersed phase momentum, the contribution to momentum change from 
the mean convective flux, the fluctuational contribution analogous to the Reynold's stress 
in turbulent flow and the effect of single particle forces on the fluid momentum. This last 
term describes the interaction AIi between the fluid and the particles at point x, 

A / i = - f f f m u l i ~ ( N - ~ - ~ ) d u ,  d,odu. [37] 

The exchange of energy between the fluid and the particles is calculated in the same 
manner, except that now there are two different terms describing the exchange of kinetic 
and rotational energies. We obtain the kinetic energy interaction term by multiplying [29] 
by ½mui~utj and integrating the range of ul, to and n, 

l ~(muliu,j C~ (NFi~du, dtodn. [381 AE~= - ~ ] a j  Oulj \ m ] 

Multiplying [29] by i ~itco~ cnt and integrating over the same volume gives the rotational 
energy interaction term, 

'fff AEp = --~ ~it(-l)i(-Oj (N~f; I Tk)dul uco dn. [39] 

Using integration by parts, and reducing the results, we rearrange these terms as follows: 

All = IIINFi duI dto dn, [40] 
J J J  
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AE~ = f f f  u , f  , Ndu, do~dn [41] 

AEp = J j J  ~,jogi@ ~ TIN du~ doJ dn. [42] 

We might also give an expression for the exchange of angular momentum between the fluid 
and the particles. However, because this expression does not appear in the hydrodynamical 
equations, one would have to derive the angular momentum conservation equation for the 
fluid (Travis et al. 1975) and this is beyond the scope of our study. 

3.2. Influence of  turbulence 
Equation [29] expresses the conservation of the total number of particles in configuration 

space. It can be considered to include the effect on the particles of the fluid turbulence. 
In a previous study of the diffusion of spherical particles, Margolin (1977) has shown that 
the diffusion coefficient is, for isotropic fluid turbulence, proportional to the contraction 
of the Reynolds stress tensor. Equation [29] provides a powerful tool for studying the effect 
of turbulence on nonspherical particles. 

Consider [29], which we rewrite as follows: 

~N (3N 1 (3 + ~ (3 
+ u,J~x i + -- (FjN) (A o. TiN) + m ~ ~(J)j ~ j  (oJjN) = 0 ,  [43] 

with Cs and A~ defined such that d~j/dt = ~o s and A~t~O o = 6o. The distribution function is 
separated into two parts, as are the force ~ ,  the torque ~ ,  the velocity, the fluid density 
and the pressure: 

N = N + N ' ,  
- -  t 5 = 6 + F ) ,  

= ~ + 7j,  [44] 

i 
U2i = U2i "~- U2i, 

P2 = P-~ + P~ 
and 

P = P + P ' .  

The bars denote mean quantities, and the primes fluctuating 
, , , p ,  N'  = Fj = T) = u2~ = = p~ = 0. Averaging [43], we obtain 

3 N + u . ~ N  1 c~ (F jN)+  ~__.~_(AoT, N ) + ~ ( o g j ~ )  . . . .  

quantities, such that 

1 0 c3 
m c3tqj (F~iN') - A~-~j  (T;N') .  

[45] 

Subtracting [43] from [45], 

[~N' O----t- + U l j  - -  aN'dxj + mc~u,j -- l C ~ ( F j N ) + I ( 3 ( ~ N ' ) + C ~ ( A i j T ~ N ) + O - ~ -  - -  moulj=--- ~~j (3aJj (AijTiN - - '  ) 

ogj m ou~j 

Expanding N'  in powers of the turbulent fluctuating quantities f ]  and T~ gives 
+ m  

N ' =  ~ N '<~ 
l = 1  

with 

[461 

N'(°= ~ BeqijFjPT;q. [47] 
p + q = l  
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Inserting [47] into [46], we obtain an infinite system of equations, from which we keep only 
the first one: 

aN '°) aN '°) 1 a ,_  1 a [-- ,0)'~ 
+u'J ---:----+m--(FjN)+m~ulj~ FjN ) at Oxj aUlj 

+ ~-~-(AoT;N)+ ~-~-(AoT, N'('))=O. [481 
acoj acoj 

We presently assume Fj = Tj = 0, since we are mostly interested in turbulence effects. We 
make a Fourier transformation of [48] to obtain 

i(co--kjuu)N'k 0)= mFklj k2 + AuT'k~,  6(k-k2-k2)dk.dk2,  [49] 

with k = (k:),j = 1,2,3. Then combining [49] and [45], we have 

aN a~ a 

t'F a 1 , ,o) 
= --JL-~juomFk)Nk +~j(AoT'k,N'k°))lexp[i(k,+k~)x,]dkdk' [50] 

o r  

aN aN a 
aS + u,~ ~ + ~ ~,N) 

,, T~i (A,j T;, N~)  _- i  

x exp[i(kt + k~)x,]a(k - kl - k:)dkt dk2dkdk'. [51] 

This equation shows the quasilinear approximation for turbulence effects on the distribu- 
tion function N. 

More details can be given in the case of a small relative velocity between the two fields. 
Equations [12] and [17] can be rewritten as follows: 

I/3 KDI ( I-~" . - - - f } U 2  -- ul "~ __F = - 1 V P + r / V p - - ( u 2 - u , ) +  CL' n x  
rn p. p, p, \ lu2---u,V (uz - u') { -  signtn" (u= - u')]}' 

[52] 

and 

T =  Ko~,rIVp(½VXUz-OJ)-Ko~3rlb(a- b ) I ( n  " - -  ~ ) u 2 - u ,  [nx  (u2 -  u,)]l._ [53] 

The condition F = T = 0 is fulfilled when V .P  = 0 and u~ = ~ (i.e. the particles are 
accommodated to the surrounding fluid). Thus, 

,,3KD, + C L , (  u ; ~  F__= _ l v p , + , V p : - - ~ - -  u', n ×  ' [541 
m p, p, I.~1: × "' 

and 

T'=K, olrIVp½Vxu2--K~o3qb(a-b) n. (n x u~). [55] 

The turbulent fluctuating force F' and torque T' do not depend on u~ and co, so [51] 
becomes 

~ ~ ~ ~ r l _ ~ _  ~ / 1 ~ - ~  
- ~  + u,j aT+ coj ~ = i J ,-o+ L-~ & Fk" ~u,, [ b - k,u,, + i6 aulj ,] 
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+ a'ia"jT'kiT'kt" ~-~ ~o - k,u~, + i6 aco; ]_J 

× exp[i(k, + k;)x,]6 (k - k, - kz)dk, dk2 d k d k  '. [56] 

Assuming that N changes much more slowly than the turbulent field [i.e. Nk2 = N6(k2)], 
we transform [56] in to 

O--7+u, j~- -xs+%-~j=i  ~ ~sF'k;F'k,-~Tk~u--l+i--- 7 d k d k '  . 

° - ~ T g ~  j .  [571 

Equation [57] shows that the introduction of turbulence leads to two diffusional effects in 
phase space, the diffusion coefficient for velocity U~ and angular velocity W,j being given 
by 

(" 1 ~ exp[i(kl + k~)x~] 
Uo.= i da[~o ~S  Fk~F~ - ~  k t ~  + ~ dkdk"  [58] 

and 

= i f AtiA,j T'ki T ~  exp[i(k~ + k~)xl W,j k,, dk  dk  ' [59] 
J, ~o co - ktu u + i6 " 

If we neglect the pressure fluctuations, we have, for spherical particles 

F; F'j = (kin ~ V 2 / 3 ) ~ j ,  [601 

which is nothing other than the Reynolds stress tensor of the surrounding fluid. This 
clearly shows the dependence of  U,j and W U on the fluid turbulence variables. 

The form of the diffusion coefficients in [58] and [59] indicates the interaction between 
each spectral component of  the fluid turbulence with the particles. Another approach for 
describing turbulence would be to relate the fluctuating part of the distribution function 
N to spectrum-integrated turbulent variables (e.g. the Reynolds stress tensor), in order to 
couple the transformed [57] to turbulence models such as in Besnard & Harlow (1985) and 
Daly & Harlow (1970). Such a model will be presented in a subsequent paper. 

3.3. Dimensionless equations 

The dispersed phase is described by [29], together with [12] and [171. We now consider 

~P20~2 ~ OP20~2U2j= O, [61] 
0t c3xj 

Opz ct2 u2i c9P2 ~2 u2iu2j ~P 
- -  ~ 2 -  - A / i  [62]  

t?t + ~xj t3xi 

the fluid equations: 

and 

Op2 ~2 E2 (~P2 ~2 uzjEz = O~z u2jP ~0~2 
O ~  -+ Oxj 6xj P ~ -- AEc - AEp, [63] 

with AIi, AEc and AE~ given by [40]-[42]. In [63], E2 denotes the total energy per unit 
volume of the fluid. 

We define the dimensionless variables fi2, P2, t, xi, /~, &, /~2, li2, and the dimensionfui 
constants U, p0, x0, such that ~2 = uz/U, P2 = o P2P2, t =  ixo/U, Ycj= xj/xo, P = P/p°U2,  
& =coxo/U, E2 =E2/U2 and ujj= u~j/U. With these definitions, the model equations 
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[29]-[33] and [61]-[63] become 

- ~ + ~  - ~ ) + ~ - ~ j ~ N ~ ) + f f ~ j j .  --d-{)+ff~u~, - d T ) = o ,  [64] 

d~j 
d~- = alj' [65] 

dog_ 
d~ - &i, [66] 

dcb Xo 
dJ: d i  - U  K~It/VP(I~z × u 2 - c b )  

i ~ o + 5K,~2P2P2a( a - b)SpA(B)la2 -- fi, 1(½~ × ~2 -- ~ )  

Xo ~2 - ~ [n x (~2 - ~,)] ~Ko3qb(a-b)n ]~ fill 

1 ~ 0 + ~ K~4 P2 P2 (a - b)Sp [n. (fi2 - fi, )] [n x (fi2 - fi, )], [67] 

fl = (n, u2 - Ul), 

dfil _pOVp~P + uKm,V;/S(~2_~ii+ Ko2p2xoS¢~lfi2_~l[(fi2_fil ) m d i  = 

xo 
+ ~ C L I  n x ]fi2 a, x ( a : - a i ) { - s i g n [ n . ( a : - f i l ) ] }  

+ xo Cc2[n X (fi2 -- Ul)] X (~2 -- Ul){ -- sign[n'(fi2 -- a,)l}, [681 

0c~2 P~ + ~e~ P2 flY= O, [69] 
ai a~j 

#(~2 #2/~2i 0~2 #2/~2i U2j # P  
- e 2 - - - A / ,  [70] 

and 

where 

aazt)zL'2 8a2P2fi2jE2 O~zfi2j/5 - 0~2 _ AE¢ -- AGo, [71] 
a ~  + 8~j c3~j P 

- -  
A~ = p O V 2 AL, A/~ = and AEp = p~ o a e ~  • 

4. N U M E R I C A L  A P P L I C A T I O N S  

4.1. Application to 2-D plane geometry 
To illustrate the possibilities of  this model, a code has been written to solve the system 

of  equations [64]-[71] for stationary flows in 2-D plane geometry. We have examined 
two-field flows consisting of  a high-speed jet of  fluid with entrained ellipsoidal particles 
escaping from a tube. Preliminary numerical studies showed that the effect of  the fluid 
vorticity is negligible in this special case. We thus specialize [64]-[71] to 2-D plane 
geometry, with the particle velocity components  uL~ and Ul,, and the fluid velocity 
components  u2x and u2, located on the axes x and y, respectively. The angular velocity has 
only one non-zero component  along the z-axis. Omitting the ^ sign above the variables, 
we obtain 

/ dUly'~ 
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and 

do3 

dt 

d x  
- -  ~ L / i v  , 

dt 

dy 
dl /-gl v, 

d ~  

dt 

dulx 

dt 

(~b/13 - -  

dt 

j i 
X° J ' K , , t V p  ~ _ K ~ 2 p ° p 2 a ( a - b ) S p A ( f l ) [ ( u 2 x - U l x )  2 
u 5 -  

+ (u2, -- u,,,)z]"zo3 -F { - -  ~ ' u K ~ 3 r l b ( a  - b )[(Uax - U,x) 2 

+ (u2~, - ub) 2] + ~ -  K~4p°o2(a - b)Sp [(U2x - uL~)sin ~ 

- (u2~.- ul.,)cos ~][(u2.~ - Ulx)COS ~ + (u2,,- ul~,)sin ~], 

pO 8P  Xo ~1 
Pl aX + U Pl V2'3 KD1 (u2x -- ulx) 

+ xopzS~frKD2[(u2~ ul,.)2 + (u2," 2 I..2 - . - u,.,.) ] ( u ~ . , . -  u , x )  
PIG 

f xO CLI r/  "2 " 
- 8  ~ t t u 2 ~ - . , o  + ~ u ~ , , - . l , , ) q  -1,'2 

+ ~ }  (u=,,- u,,)E(~z,,- ~,aoos ~- (u2x- u,.Osin ~] 

XoP2Seff  , I  r," 
p~fPpl 8y 4 X°up I qV2, 3 KDI (Uzv -- /glv) -+- p--~--p/kD2[tU2x -- Ulx) 2 

+ (/ ' /2v- b/lv)2]l/2(b/2v- Ul':) --  • fiX0 CLI 
. . . .  ~ u p, vp [ (~x  - u~.,- )~ 

+ (U2v_ b/iv)2] 1/2 .jl_ CL2 ~ (U2x __ /.,/2x)[(U2v_ Uly)COS 
- - p,  v p J  - 

[73] 

[74] 

[75] 

[76] 

[77] 

- (u2x - u,x)sin ~], [78] 

with 6 = sign[n'(u2 - u~)], 

8~2p~ + a~2P2U2.~ + a~2P2U2y _ O. [79] 
at ax  8y 

~3~2P2 U2x 80~2P2U22x 630~2 p2 ~2x U2y 8 P  
a ~  + a ~  ~ ay - ~ 2 7 x - a L ,  

a~2P2U~,. 8P  ao~2P2b!2r 8~2P2b/2x U2v q 
at + ax ay - ~2 -~y - AIy 

and 

aO~2 P2 E2 

[ 8 o ]  

[81] 

O~2P2U2~.E2 6~2u2xP &t2u2~,P 0~2 at -} 8~2P2u2xE2 + " - " P - A E ¢ -  AEp. [82] 
- -  ax ay 8x  ay & -  

We assume that the equation of  state of  the gas is 

E 2 = P/ (?  -- 1)p 2. [83] 

In [77] and [78], CL~ and CL2 are given by [9] and [11], where [11] shows that CL2 is 
proportional to (sin2fllB(fl)). With this precision, all the dependencies in the different 
variables are given explicitly in [72]-[83]. 
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4.2. N u m e r i c a l  s c h e m e  

The Liouville equation [72] is solved in conjunction with a particle method; that is, 
the distribution function N is approximated by a sum of weighted Dirac 6-functions, 
corresponding to test particles that are followed along their trajectories. The interaction 
between each test particle and the surrounding fluid is calculated cell by cell along these 
trajectories, defined by [73]-[78]. The fluid equations [79]-[83] are solved using the 
particle-in-cell method, as in Travis et  al. (1975), in which shocks are smoothed out by 
artificial viscosity. These two techniques are coupled in the following manner. First, 
assume that ~l = 0 and solve the fluid equations for P2, U2x, u2y and P until steady state 
is achieved. Then, solve for the particle trajectories, holding the fluid variables constant, 
to obtain the cell-averaged particles variables ~ ,  u ~ ,  Uly, ~ and to. Finally, set a2 = 1 - ~1 
and use the averaged particle variable values in the fluid-particle interaction terms to solve 
for P2, U2x, Uzy and P by iteration until steady state is reached. After calculation of the test 
particle trajectories, we can deduce the cell-averaged volume fractions and velocities for 
the particles. This is done by assuming that the particle momentum of a given cell is the 
sum of  the momenta of the particles located within the cell. 

Defining ~j, as the volume fraction of  particles in the tube, and n,, as the number of 
test particles created in a given input cell, than ~, = :el, n i n e , ,  where n is the number of 
particles presently in the cell. We then assume that [12] and [17] are valid when Ul is 
replaced by U~av, the cell-averaged velocity, calculated from the velocities of the particles 
located in the cell. After the advection of the fluid variables, we use a semi-implicit scheme 
for the Lagrangian phase of  the calculation (implicit for the coupling terms), which 
provides stability even for strong coupling between the particles and the fluid. Equation 
[77] is discretized as follows: 

d7 - 7, u pl v,~ 

+ Ko2 XOp Se . n __ 
Pl Vp t~u2~ Ulx j 

,+'~21~t n+l n+± q- (Idly - -  Uly ! j_\U2x - -  Ul x 2) 

( X  0 CLI I 1 
- , ~ "  " - u i x  5) + ( u 2 > - u , ,  ) ] 2 ~ U p i V p [ ( U 2  x .+L 2 n .+~  2 - 

+ Z }  [(u,>.- uT;4)cos C 

" ' "+~')1 
- (u2x - u "+~sinl.,: I ~"](u~>.-  u,,.. - , [84] 

A similar discretization is used for [78]. The energy equation is then solved, with the source 
of energy AEc taken equal to 

pop2 . .+½~ .a_ du2yn+!2 ] AE~ = [ duT+½ p L-~-(u2x-u,x , . ~ (U~y-UT?b  .j [851 
In this study, AEp is neglected. The location of the variables is shown in figure 5. 

4.3. N u m e r i c a l  resul t s  

We present results for the case of a high-speed gas jet with entrained ellipsoidal particles, 
impinging in a rectangular obstacle, as shown in figure 6. The sonic two-fluid flow in the 
pipe expands at the exit to fill the cavity, and, after impinging on the rectangular obstacle, 
to exit through the open region above the obstacle. The input pressure is 106dyn/cm 2, 
and the other dimensionful quantities are Y0 = 1 cm, Pl = lg /cm-3,  P2 = 10=3g/cm 3, 
U = 3.3 l04 cm s i. The length x0 corresponds to the radius of the pipe. We choose Xobs = 5, 
Yobs = 8 ,  X! = 32, y! = 15 and xl = 5. 
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Uly U2y 

i 

0102 
Ez 

~O Ulx 
U2x 

Figure 5. Location of the discretized variables on a cell of  the mesh. 

The first calculation considered spherical particles (a = b = 10 4 cm), with ~ = 10 4 at 
the exit of the pipe. 

Figures 7a~l display the steady-state patterns simulating the circumstances described 
above. They are, respectively, the density and pressure contours and particle and fluid 
velocity fields. Figures 7a,b show an expansion of the jet at the exit of the pipe, a shock 
at the obstacle (which is smeared out due to the artificial viscosity and the coarseness of 
the grid), a discontinuity in the fluid flow at the obstacle due to the gas inside the cavity. 
Particles are not lifted but are partially deposited by the flow in the region of the obstacle. 
This is also indicated in figure 8a, which shows that the concentration of particles increases 
in the region of  the obstacle. In this model we assume that, when particles hit the obstacle, 
they stick to the wall, and we neglect the effect of their accumulation. The effect of the 
particles size is shown by comparing figures 8a,c with figures 8b,d, where the same results 
are displayed for a = l0 4 and a = 10 3. In the last case, particle inertia exceeds the drag 
effect and most of the particles impact on the obstacle. 

We now consider ellipsoidal particles of equivalent radius a = l0 3, and eccentricity 
e = 0.5. The equivalent radius of a particle is the radius of a spherical particle of same 
mass. Figures 9a-d show plots of the particle volume fraction and velocity as well as the 
angular velocity and orientation of the particles. In figure 9d, all of  the particles have the 
same orientation at the exit of the pipe, but they gradually rotate in the cavity due to the 
fluid torque. The length scale of the rotation can be compared with the relaxation lengths 
calculated in section 2. 

For the same equivalent radius of l0 3 cm (i.e. same weight), figures 10a~l show results 
for a different eccentricity. The initial orientation is the same as in the previous run. Other 
runs with different initial orientations, not presented here, have shown that the qualitative 
result of figure 10d is not changed. Figures 10a~l show clearly that a diminution of particle 

Y~ 

x° i 

Xobs 

xt~, Yobs 

x~ 

Figure 6. Spatial configuration of the test problem. 

X 
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(b] 
(d l  

Figure 7. Steady-state patterns: U = 3.3 x 104, P0 = 1 x 106, Pl = 1, p: = 1 x 10 -3,  ~t I = 10 -4,  
a = 10 -~,  b = a. (a) Fluid density; (b) fluid pressure; (c) particles' velocity; (d) fluid velocity. 

(ca) 

(bl 

. . . . . . . . . . . . . . .  # s s ~  

Figure 8. Steady-state patterns: (a) particles' volume fraction (a = 10-4); (b) particles' volume 
fraction (a = 10-3); (c) particles' velocity (a = 10-4); (d) particles' velocity (a = 10-3). 

(a) 
(c) 

Figure 9. Steady-state patterns: a = 2 u 3 ×  10 -3,  a~q = 10 -3,  mr/mr= I, e = 0.5. (a) Particles' 
volume function; (b) angular velocity; (c) particles' velocity; (d) particles' orientation. 
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eccentricity, i.e. an increased flatness of the particle, induces a greater sensitivity to lift and 
torque. Rotation takes place immediately after the exit from the pipe, and the particle 
orientation more closely follows the fluid stream lines (i.e. in the vicinity of  the obstacle, 
their rotation is more important). We also notice that some particles flow past the obstacle, 
although most of the particles impact on the obstacle, due to their large inertia. The 
particles penetrate the stagnation region, the pressure gradient being too small to prevent 
their penetration in this region. Figure 10d also shows that the length scale of oscillation 
is much shorter than is the preceeding cases. 

Results are displayed in figures 1 l a d  for the case e = 0.01, the other parameters being 
kept at the values in figures 10a~l. The trends shown in the previous points are clearer 
here. Oscillations of the particles are visible (note that the angular velocity changes sign 
in figure 1 lb), and we also see a shorter accommodation time in figure l ld ,  where the 
particles tend to be aligned perpendicular to the fluid velocity vector. 

In figures 12a~l we consider the extreme case e =0.001,  when particles can be 
considered as disks. Their sensitivity to lift and rotation is illustrated by figure 12c. Even 
at the exist of  the pipe, particles are lifted and follow the trajectories determined by the 
fluid velocity vectors everywhere except in the recirculation region. They accommodate to 
the flow almost immediately, oscillating around their equilibrium orientation. Another 

(a) 

(b) 

(a) 

( b )  

(c; 

i 

(d) 

. . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . .  ' . . . . . . . . . . . . . .  4 ~  

. . . . .  :::::::::::::::::::::::: 

. . . . . . . . . . . . . . .  . , , , ~ : : :  . . . . . . .  

Figure 10. Steady-state patterns: a = 5 ~,'3 x 10 -3 ,  aeq = 10 -3 ,  e = 0.2. (a)  Particles' volume fraction; 
(b) angular velocity; (c) particles' velocity; (d) particles' orientation. 

w 
(c) 

( d )  . . . . . . . . . . . . . .  ~ ~  , . .  

Figure 11. Steady-state patterns: a = 102/3× 10 -3 ,  a e q =  10 -3 ,  e = 0 . 0 1 .  (a)  Particles' volume 
fraction; (b) angular velocity; (c) particles' velocity; (d) particles' orientation. 
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(c) 

(b)  

(c) 

[d: . . . . . . . . . . . . . . . . . .  1~, ,~ , :1 , . . .  

F F F F F k ~ A X 4 1 ~ A A A X ~  . . . . . .  

~ F F k ~ F F F A A X ~ 4 4 # ~  

Figure 12. Steady-state patterns: a = 10 -2, a~ = 10 -3, e = 0.001. (a) Particles' volume fraction; 
(b) angular velocity; (c) particles' velocity; (d) particles' orientation. 
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Figure 13. Forced exerted on the obstacle vs eccentricity of the particles: + ,  due to the fluid 
( x  10 1); x ,  due to the particles. 

interesting feature is that particles do not penetrate the stagnation region and, therefore, 
do not impact on the obstacle. This illustrates the strong influence of  the particles' 
eccentricity on the force exerted on the obstacle. 

Figure 13 shows a plot of the forces on the obstacle due to the fluid and to the particles, 
as a function of  the particle eccentricity. This plot shows clearly the importance of the 
shape of  the particles on the result. This figure is for a particle volume fraction of  10 -4, 
which explains why the force due to the fluid is still large compared to the force due to 
the particles. However, a small increase in particles volume fractions gives a comparable 
effect for particles and fluid. 

If the ratio of  densities is smaller, the particles are more completely entrained by the 
fluid, and follow its trajectory (figure 14). 

4.4. Validity of the numerical scheme 

Our numerical procedure must be refined where ~j becomes larger, e.g. larger than a few 
percent. In this case, however, the collisions between particles cannot be neglected, and 
we must introduce the simulation of  these collisions in our code. It is possible to derive 
a criterion which defines the limit of validity of  our procedure. Consider the kinetic energy 
flux of particles at the boundary of  a given cell. Thus, 

(Su,). [86] Fp ----- ~1Pl  Ul 1 2 
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(a) 

(b) 

[c} 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 14. Steady-state patterns: Pt =2 x 10 -3,  p2 = |0 3, ~] = 10-3, e =0.1, a = I0 3. (a) 
Particles' volume fraction; (b) angular velocity; (c) particles' velocity; (d) particles' orientation. 

Similarly, the kinetic energy flux o f  gas is given by 

F~ = g 2 P 2 u 2 ( l u ~ ) .  [87] 

Assume that the particle velocity has already become accommoda ted  to the fluid velocity, 
u~ =u2.  Then the ratio o f  the two fluxes is r = g l p l / ~ 2 P 2 .  As an example, take p~ = 1, 
P2 = 10 3, e~ = 10-2, ~2 = 0.99. Here r = 10, which shows that  even a small particle volume 
fraction can produce drastic alterations in the flow if the ratio o f  densities is large enough. 

N o w  consider what  happens when the particles enter the shocked region in front o f  the 
obstacle. The stopping length for the particles occurs when the particle mot ion  has fluxed 
out  a mass o f  gas equal to the particle mass. Define l, as a characteristic size o f  the particle 
and A as its cross-sectional area. The stopping length 12 is then given by the equation 

where 

AlE Pl = A12P2, 

12 = lj P~. [88] 
P2 

For  example, for spherical particles of  radius a = 1 0  - 4 ,  with the other  parameters  
unchanged/2 -~ 103 a, or  12 = 0.1 cm. In this distance, virtually all the kinetic energy of  the 
particles has been given to the gas, where it resides as heat (which produces a potential 
energy from which the gas can expand violently). In our  example, the gas energy would 
increase by a factor  o f  10 when a = 10 6, but would only double when a = 10 3, the 
s topping length in this case being made larger than the length o f  the shocked region. F rom 
this analysis, we deduce a criterion for convergence o f  our  numerical procedure.  We 
require that the multiplying factor  to gas energy at the front  of  the obstacle due to the 
stopping of  the particles must  be of  the order o f  1. I f  D is the shock s tandoff  distance, 
then the multiplying factor to the gas energy ~ can be expressed as 

D c~2p] 
- [891 

12 R2P2 

and, since l 2 = l~ P l / P 2 ,  o r  l 2 = a Pl/P2 for spherical particles, we get 

Dcq 
~ - - - .  [901 

a ~2 

Consider for example the set o f  parameters:  a = 10 4, D = 0.1, ~ = 0.01, ~2 = 1. We obtain 
= 10 > 1, which shows that this criterion is rather restrictive. In such a case, the 

numerical procedure would have to be changed in the following manner:  at the end of  an 
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iteration l, for any variable at, we interpolate to obtain the final value of a~ by 

~(final) = Oat + (1 - 0)ul_ ~, [91] 

0 being a function of ( such that 0 is a decreasing function, and 0 tends towards 0 when 
( tends towards infinity. 

5. C O N C L U S I O N  

The simple model developed in this paper shows the important effects on fluid flow that 
result from the introduction of  nonspherical particles into the flow. These effects differ 
markedly from those seen when the particles are spherical. For physical cases of interest, 
such as the rupture of a pipe in a nuclear reactor, or the transport of  slurries in a pipeline, 
the different physical variables are strongly affected and the calculation of exterior wall 
resistance must take into account the influence of  the nonsphericity of  the particles. 
However, we did not account for the deformability of the particles in our model, nor the 
thermodynamical processes within the particles, which can be predominant in some cases, 
as shown in our study of  relaxation time in section 2. Generalization of  our model is very 
important, and will be presented in a subsequent paper. 

N O M E N C L A T U R E  

a = Largest half diameter of  the spheroids 
a,, ~z = Volume fractions of particles and fluid 
A(fl) = (cos 2 fl + e z sin 2 fl)l/2 

b = Smallest half diameter of the spheroids 
fl = Angle between the normal to the particle and the relative velocity 

between the two fields 
B(fl) = (sin 2 fl + e 2 COS 2 fl)I/2 

CL~, CL2 = Lift force coefficients 
= Fluid polytropic index 

AE¢ = Energy interaction term 
AEp = Rotational energy interaction term 

e = Particles eccentricity 
F o l  , FD2 , F o = Drag force 
FLj , FL2 , F L = Lift force 

= j t h  component of the force acting on a particle 
AIi= Momentum exchange between the two fields 

2, ,Do -- Tensor of  inertia of a particle 

K D I ,  KD2 

Ko,, , K,,,;, K,,3, K,~4 = 
m - ~  

n =  

N ( x ,  u, n, to, t )  = 

r =  

Pl, P2 = 
p~=  
p~= 

Se~ = 

so= 
T I , T 2 , T 3 , T 4  = 

r/= 
/gli,  ~/2i 

U =  
vp= 

Drag force coefficients 
Torque coefficients 
Mass of  a particle 
Vector normal to the particle 
Particles distribution function 
Radius of  a particle 
Particles and fluid densities 
alpt 

a2P2 
Cross section of  a particle 
Particle surface 
Torque 
Torque ith component 
ith component of particles and fluid velocities 
Relative velocity between the two fields 
Particle volume 
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